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Preface 

! 

This report is the eighth concerned with research accomplished 

in connection with Navy Contract Nonr-433(00), between Dunham Laboratory, 

Yale University, and the Office of Naval Research, Department or the 

Navy. In this report is given a discussion of the transient behavior 

of a ferroresonant circuit in the region of the steady-state response* 

Application of the present work to ferroresonant trigger circuits is 

outlined. 

The research was carried on and the report written by J, G. Skalnik 

under the supervision of U,  J. Cunningham, Director. 

J. G. Skalnik 

New Haven, October 1954 
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Abstract 

Several physical systems ar^ described approximately by the 

equation 

—~ + a -rf + b^ + cgr = F cos co..t 
dtT    at 

where a, b and c are constants of the system and F and w, are 

constants of the applied forcing function. This is a second-order 

nonlinear differential equation whose complete exact solution is 

unknown. 

Approximate solutions for the steady-state behavior of the systems 

represented by the abovo equation are well-known. The present work 

invest.! gates the transient behavxor in the r«gion of the steady-state 

response. The theory developed in supported by solutions using an 

analog computer and by experiment with an actual electrical circuit 

whose behavior is approximated by the above equation. 
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1. 

I. Introduction 

The performance of many physical systems is controlled in part by 

a nonlinear element. Fortunately, from the point of view of simplicity 

of analysis, the nonlinearity is often small enough that it may be 

neglected without introducing appreciable error. In other cases 

however the nonlinearity may not be ignored and in fact may be 

deliberately introduced. Here an assumption that the nonlinearity 

is small but not negligible may lead to a mathematical expression 

that can be treated analytically with fair accuracy, at least in certain 

regions of operation. This analysis may then furnish a qualitative 

indication of the performance when the uoru-inearity becomes more 

severe. In the extreme case graphical or experimental techniques may 

have to be employed to study the system. 

Nonlinear electrical circuits that have received considerable 

attention in the past include those incorporating an inductor that 

exhibits a nonlinear relation between the flux established in the 

core and the current flowing in the windings on the core. Any in- 

crease of the current above a certain value leads to the establishment 

of very little additional flux. The inductor is then said to be 

saturated. One of the applications utilizing this nonlinearity has 

1 2^ 
been the simulation of the effect of a mechanical relay. '   Here a 

slight change of a control parameter, an applied voltage for example, 

causes a large change in another quantity. This quantity represents 

the output and may be the voltage developed across one cf the circuit 

*These number symbols refer to the bibliography which appears at the end. 
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elements. Slight readjustment of the control parameter causes the 

operation 10  transfer back to the original state. The method of 

analysis used with such a circuit has been largely graphical with some 

attempt being made to formalize the necessary calculations using 

3 
experiment*:.! data available for a particular circuit.  A large amount 

of the work reported in the literature i3 based on a simple series 

combination of resistor, capacitor, and nonlinear inductor with an a-c 

generator as shown in Fig, 1. However more complicated combinations 

have been investigated at least from a graphical point of view.  It 

should be noted that the analysis associated with the circuit of 

Fig. 1 is applicable to other physical systems such as those involving 

a nonlinear spring, nonlinear capacitor, or a synchronous machine with 

an oscillatory component of load. 

Recently considerable interest has been shown in the circuit of 

Fig. 1 because of the application of so-called ferroresonant trigger 

circuits to electronic computers. This type of trigger circuit 

involves the parallel connection of two of the circuits shown in Fig. 1. 

This combination is then connected in series with an impedance and a 

source of alternating voltage, '  The capacitor and the inductor in 

each half of the circuit would form a normal series resonant circuit 

at some excitation frequency if the inductor were linear. If the 

inductor is nonlinear however, and the frequency of excitation is 

increased from a low value, the condition called resonance in the 

linear case is only approached. Increase of the excitation frequency 

from a low value causes an increase in the amplitude of current flowing 

in the circuit. This in turn lowers the effective value of inductance 
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and increases the resonance frequency of the equivalent linear circuit. 

With further increase of \.he  excitation frequency, the process 

continues with an increase of current and decrease of effective 

inductance. Eventually losses in the circuit will not allow the 

current to be increased further. Increase of the excitation frequency 

above this point will cause a sudden drop in the amplitude of current. 

The effective inductance of the circuit will return to the value 

existing at a low frequency of excitation. If the excitation frequency 

is now decreased from its high value, somewhat the same behavior is 

experienced except the current now suddenly jumps from a low value to 

a high value. This will occur at a frequency of excitation somewhat 

lower than that causing the sudden change of current from a high to a 

low value, 

This behavior is typical of both halves of a ferroresonant trigger 

circuit but, as a consequence of the common series impedance, only 

one-half of the circuit may be in the high-current or high-flux state 

at a time. The other half at this time WIJLL be operating with a high 

value of effective inductance and will be drawing a relatively small 

current from the alternating supply, A triggering pulse applied to 

auxiliary windings on the cores causes the high-flux condition to 

switch from one inductor to the other. The design of ferroresonant 

trigger circuits appears to be carried out by graphical and experimental 

methods and little has been published about the transient behavior 

present during the switching interval. Isborn has quoted a transfer 

time in the order of 5 cycles of the applied excitation voltage, a*~>d 

5 
more recently Rutishauser has published the figure of 3 to 4 cycles 

for the transfer time. 
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A large portion of the literature dealing with the analysis of 

the system represented by the circuit of Fig, 1 is concerned mainly 

with the steady-state response ' and the regions of stability. 

9 
Attention has been given to developing a general method of analysis 

but specific treatment of the transient behavior of the circuit of 

Fig. 1 is limited to the case of zero external excitation. Some 

results pertaining to the transient behavior associated with forced 

oscillations, that is with finite external excitation, have been 

published in the form of integral curves,  but it i3 difficult to 

interpret from these the actual time involved during a transient. 

Here the behavior is assumed to be in the form of the sum of two 

sinusoidal components, at the frequency of the excitation and 90- 

degrees out of phase, whose amplitudes are slowly varying functions of 

time. The integral curves are plots of the amplitude of one component 

versus the other and show clearly the effect of initial conditions in 

the circuit on the final operation. However numerical integration or 

the equivalent is required to determine the time involved in arriving 

at the final state and the actual waveforms existing during the time 

of the transient. 

The present work was undertaken to investigate the transient 

behavior in the region of the steady-state response of the circuit of 

Fig. 1, The results of this analysis are applicable to the behavior 

of ferroresonant trigger circuits during the switching or transition 

interval. In particular, attention is paid to the effect of the 

magnitude and position in time of the triggering pulse on the transient 

behavior of the circuit. 
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As previously stated the circuit shown in Fig. 1 is one in which 

there exists a nonlinear relation between the flux-linkage d   and 

the current i in the iron-cored inductor. This relation may be 

expressed as 

i -  a.,/ + a_*r + actr + • • • • (1) 
-L    i o 

where only odd-power terms appear because of the presumed symmetry of 

the magnetization curve about the origin. It is common practice to 

consider only the first two terms of this series as representing the 

characteristics of the inductor. Two terms allow the representation 

of saturation effects at large values of flux but ignore the curvature 

of the magnetization curve in the region of the origin.  The coef- 

ficient of the linear term a, is the reciprocal of the usual self- 

inductance of a linear inductor, and tho coefficient a„ is determined 

by the magnitude of tho nonlinearity. 

The voltage equation for the circuit shown in Fig. 1 may be 

written as 

or by differentiation as 
**J dt • iR + ~ I idt = E sin u),t (2) 

~i+ R £ + \ - -iE cos V (3) 
dt 

where t is time, R is the resistance, C is the capacitance, oo-, 

is the angular excitation frequency and B is the Deak amplitude of 

the excitation voltage. If the relation of Eq. (1) is substituted 

into Eq. (3), the resulting equation is 

r ^+ R it (ai^+ V3) + "c1 ^+ c2, & ~ uiE C03 V        (4) 

I 

I 

: 
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If the nonlinearity and the damping are considered small this may be 

reduced to the form 

&-$ + a & + hi + c*f3 = F cos Wlt        (5) 

where a = a-,R, b = a,/C, c = a„/C and F = io,E. This equation is 

usually referred to as Duffing's  equation in the literature. Its 

complete solution is not known but it has been shown that a first 
7 

approximation to the steady-state solution is 

<j> ~ 4    cos <d,t (6) si 

if the resistance term is neglected entirely. Substitution of Eq. (6) 

into Eq, (5) with a = 0, using the identity 

3     3        1 cos w,t = r cos u,t * f  cos 3wnt 
•l-   <+     -L   4     J- 

and neglecting the resulting third-harmonic term yields the relation 

„ 2 - b • i c rf * - f  . (7) 
s 

This relation establishes the amplitudo of response (/  at the funda- s 

mental frequency in relation to the circuit constants b and c and 

the excitation constants F and to,. It is of course an approxima- 

tion to an exact solution because of the simplifications that have 

been introduced. The relation of Eq. (7) is plotted in Fig, 2 for 

arbitrarily-chosen values of b and F and for two values of the 

nonlinearity parameter, c = 0 and c ]> 0. The curve is a normal 

resonance curve of a linear circuit for c = 0, but for c ]> 0 the 

curve is tilted to the right. Since the figure is plotted for the 

case of zero damping, the response 4     is exactly in phase \d.th the 

excitation along the left-hand branch of the curves and exactly out 



L C R 

 . .    <y»   . 
E cosw,f 

Fid.l.      Cercuii*    lui^U    now!int9.r    indu.ctosr 

. 

C--.005 
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of phase along the right-hand branch. This must be modified slightly 

to include the effects of damping in the circuit but the damping is 

important only in a limited region so long as it is not excessive. 

The effect of damping on the steady-state response curve for c > 0 

is indicated by the dotted line in Pig. 2. 

It is seen that for certain values of oo, and for c ^> 0      there 

are three possible values for 4  • The actual state of response 
5 

depends upon past history and may be as represented by points P,, 

the upper stable state, and P„, the lower stable state. The third 

possible value of i     designated by P., is unstable and any small 
s j 

variation from this point will cause the response to transfer to 

either P, or P~ depending upon the nature of the disturbance. 

The existence of these two stable states as shown in Fig. 2 is the 

basis fox- li;« operation of fcrrcresonant ti _3?r circuits. 

If the inductor is linear, only one stable state exists for any 

chosen set of excitation and circuit constants. The analytical 

12 13 
treatment for this case is fully documented in the literature, ' 

It is established that a wide variety of transient solutions exist 

depending upon the initial conditions and the conditions of damping. 

For the case of small damping, the complete solution is in the form of 

the sum of two components that in general are of different frequency 

and Amplitude. One component is sinusoidal and has the same frequency 

as the applied excitation and is constant in amplitude. This is the 

steady-state response. The other component is at a frequency dependent 

en the circuit constants and its amplitude decreases exponentially 

with time. This is the transient component. The actual appearance 
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of the resulting waveform varies widely depending on the relative 

frequency, amplitude and initial phase of the two components. If 

the two components are only slightly different in frequency, as would 

be the case when the excitation frequency is close to the natural 

frequency or frequency of maximum steady-state response, the resulting 

waveform would be expected to have regions of large amplitude where the 

two coni^oti— -..„_   J~ing together almost as if they were of the same 

frequency and phasej    This region is followed by one of small amplitude 

almost as if the two components were of the same frequency and in 

phase opposition. This is the well-known phenomenon of beating. 

If one surmises that this same general sort of behavior would 

take place in the nonlinear case, region?? of high amplitude would 

lead to relatively lower effective values of inductance in the circuit 

due to the effect of saturation and thus to a relatively higher 

frequency for the transient part ox the solution. In a similar manner, 

the regions of low amplitude would lead to a relatively higher effec- 

tive value of inductance in the circuit and thus to a relatively 

lower frequency for the transient part of the solution. This quali- 

tative argument indicates that the situation is considerably more 

involved and not so easily treated analytically as the linear case. 

Preliminary investigations using an analog computer produced solutions 

of the general form shown in Sect. V, Fig. 11 which confirm the above 

argument. They indicate that to a first approximation the solution 

in a region where the nonlinearity is important may be assumed to 

be in the form of a sinusoid modulated both in amplitude and phase. 
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II. Transient Behavior in the Region of the Upper Stable State 

1, General undamped case. 

In this section the behavior of an undamped system described by 

Eq. (5) with a = 0 and operating in the neighborhood cf the upper 

stable state is investigated. The equation describing the operation 

is then 

^-f + bsrf + c^ = F cos u,t (5a) 
cHT 

If the substitution of 0 = wnt is made. EQ. (5») becomes 

ty • -^ 4 + -**# .3- cos e        (5b) 
dS*  w^    w *    u> * 

The solution of Eq. (5b) is assumed to be of thB form 

4 = A cos p (8) 

where in general A and p are functions of 6 and are described 

mars iULuj jLatei", By diffei'eiiLictLion ox Eq. \oj 

and in a similar manner 

£i . ,A sin p 4 - A co, P (f )2 - 2 sin p f ^ + cos p ^    (l0> 
de^      dfr      de       dy d*     de2 

It is also sften that 

<?  = A3 cos3 p - A3(2- cos p + r  cos 3P)     (11) 

As in the introduction the third harmonic term is neglected here and 

thus, approximately 

<? m 2 A3 cos p (11a) 

The neglect of the third harmonic term _..recludes the possibility of 

obtaining an exact solution to Eq. (5b) by the following development. 
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Thus any solution in the form of a sinusoid gained in the present 

analysis represents only the fundamental term of the waveform that 

would be determined experimentally in an actual circuit. In particular, 

as may be seen by inspection of Eq. (11), the neglected third-harmonic 

term would lead to a triangular-shaped waveform of flux. Differentia- 

tion of Eq. (U) leads to the expectation of a flat-topped waveform 

of voltage for the inductor in the actual circuit of Fig. 1. 

By substituting Eqs. (S), (10) and (lla) into Eq, (5b) it is seen 

that 

2 2 
-A sin p £| - A cos p (%2 - 2 sin p |§ 7S + cos 3 ^4 

d^ Qe       de de     de2 

 ^ cos (9 + y) + -£- A cos 0 + f -~ A3cos 0 » 0       (12) 
ui V V 

where the angle y has been included in the argument of the excitation 

function to allow an arbitrary phase of excitation at t = 0. This 

xS equivalent to allowing the triggering pulse in a ferrcresonant 

trigger circuit to occur at any time in the excitation voltage cycle. 

It is presumed in the following analysis that the pulsing circuit can 

completely detei-mine the flux to be /  at 6 = 0, hold the rate of 

change of flux at zero at the time 6=0, and then release the 

system in a zero time interval to react according to the equations to 

be developed. In an actual trigger circuit, the pulse is introduced 

as a voltage pulse or current pulse rather than a pulse of flux 

directly. In either case however, the application of the pulse to 

windings on the core of the inductor results in flux being established 

in the core. Thus it is assumed that the waveform of the voltage 
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or current pulse is adjusted 1,0 satisfy tho desired initial condition 

of flux. As a practical matter, the presumed initial conditions put 

rather rigid requirements on the triggering pulse in a ferroresonant 

trigger circuit and it is probably difficult to satisfy these require- 

ments exactly. 

Following the argument in the introduction, the amplitude A in 

the above solution, Eq. (8), is assumed to be of the form 

A = j^jl + m sin (| + <\>)j (13) 

where m is the amplitude-modulation index, a is the number of 

cycles of the excitation existing between successive peaks of the 

modulation, £     is the average amplitude and ty   is the phase angle 

associated with the envelope. The phase function is assumed to be of 

the form 

3 - e + V - n ccs (- + 40 (14) 

where n is the phase-modulation index. Then the following relations 

are valid, 

1 -^cosCf**) (15) 

(16) 

(17) 

(IS) 

If the value of m is kept reasonably small as compared to unity, 

the terms involving m of power higher than two may bo neglected. Thus 

A3 = <z^[l + m sin(| + 40j3^ ^[l + | m2 + 3 m sin(| + *)] > (19) 

d A 
~ 5 
An* 

. -^ ^ sin <£ • •) 
a 

d£ 
de = 1 + - sin (•- + *) a    Na 

2 
dS 

= •% cos (| + 4) 
Z           a a 
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Equation (19) is obtained by using the identity sin Z = — II - cos 2Z| 

and neglecting the term which leads to a second harmonic in the 

envelope of the solution. In a similar manner 

O2 - i • » -» <| • •> • 4 W» 
2a 

Use is also make of the series form of the sine and cosine functions 

where 

cos Z = 1 - 4- + 4r  (21) 

and 

Z3   Z5 sin z = z " T + ilo ' * ' '        (22) 

If the terms higher than the squared terra are neglected 

2 - 
cos 0 = (1 - —-)  cos (9 + y) - n sin (- + <10  cos (e + y) (23) 4 o. 

and 

sin g - (1 - S-) Ein (e + y) + u sin (f + *) cos (8 + y)       (24) 
4 ci 

where the trigonometric identities of the form 

co3 (W + Z) = cos W cos Z - sin W sin Z (25) 

and 

sin (W •» Z) = sin W cos Z + cos W sin Z (26) 

have been utilized and again the second-harmonic terms arising from 

the Z^ term have been neglected. 

If Eqs, (13) through (24), with the simplifications as outlined, 

are inserted in Eq. (12), the expression expanded by simple multipli- 

cation and the terms collected, the result is 
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v          .        3c&       2   2.  3c^n2  9cm2^ 

(-1 g  ~2   2  T 2 2~"   2"^ COS '   V' 

+ (n ^ ^ + ~2 + —) cos (- + 40 sin (9 + y; 
u>,  4 w,   a. 

* (-m • fiS + _^Li - JL - &) cog (e + y) 3in (S + 4,) = 0    (27) 
a),  4 w,   a 

where, as before, the terms of the multiplication process leading to 

a second harmonic in the solution and the terms in n and m higher 

than the second povrer have been neglected. From this expression it is 

seen that 

3c^        2 2        3c(rf2n2      9cm2i4 
-1 - -^ • -\  + —\  + \   - *•§ L- *  _i = o  (28) 

^.to,   to..   4^,       4^-,  16 w^   8 to, 

.    3 en**2      _ 
n - -^ K  + -% • 25 . o (29) 

to,   4 w,   a 

and 2 

~m + -2 * TT" 1 - —3 ° (30) 
co,   i^j^    a 

since the trigonometric forms in Eq, (27) are not in general zero. 

For simplicity the following two definitions are made. 

1 , b , ^1 
r - "X    2  .  2 to1   4 w, 

,   b   3c^l2 
8 2 -1 + -2 + —2 

to-^   4 ti^ 



Now Eqs. (29) and (.30) may be rewritten as 

1 \ . 2m -nv,s - 

and 

-n(s - -i) + f  - 0 (29a) 

m(r - i) - 2S - 0 (30a) 
a 

By combining these two equations to eliminate m and n it follows 

that 

(ra2 - l)(sa2 - 1) - 4a2 (3D 

or 
 —2  

a2 = (r + s +  4) • V(r v s + 4) - urs       (31aj 
<c rs 

To establish the boundary conditions at zero time, two expressions 

are necessary to satisfy the initial amplitude 4     and the initial 

slope, r at fl=0, of the solution. If an amplitude 4     is 

introduced in the system at zero time, 

dn  = 4-t   (l + m sin 40 cos (y - n cos 40     (32) 

This relation is gained by combining Eqs. (8), (13) and (14) at 9 = 0e 

If the initial conditions allow -rg to be zero at 9=0, Eqs. (9)> 

(13), (14), (15) and (17) may be combined to give the relation 

in    .1 — cos * 
tan (y - n cos 4-) • •••     (33) 

(1 + m sin 40(1 + - sin 40 

2, Case of introducing the triggering pulse of flux at the time 

of the peak of the excitation. 

As stated in the introduction the steady-state flux for the un- 

damped case i? either in phase or out of phase with the excitation 
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voltage. Thus if the operation is in a region where two stable states 

exist and the flux has a magnitude consistent with the lower state, 

a pulse of flux of the form previously described and of positive 

polarity should be introduced at the time of the positive peak of 

the excitation to cause the operation to transfer to the upper stable 

state. If this pulse is of exactly the correct magnitude consistent 

d«( 
with the upper stable state and releases the system with -rr = 0, no 

transient will be generated. If the operation is initially at the 

upper stable state, a negative pulse should be introduced at the time 

of the positive peak of the excitation to transfer opcrati.cn to the 

lower stable state. 

For the simplest possible situation it is assumed that the value 

of a is large, greater than ten for example, so the terms involving 
2       2 

—~2 and —•£ in Eq, (12) may be neglected. This may be verified by 

the comparison of Eqs, (15) and (16), and by the comparison of Eqs, (17) 

and (IS). It might be observed at this point that Hayashi  has 

neglected the equivalent of these second-derivative terms throughout 

his analysisr All but the linear terms in n and m are neglected 

here and since the pulse is to be introduced as just the proper time, 

y = 0. Under these simple conditions Eqss (28), (29) and (30) reduce to 

-1 - —^ + As  •  ^ , o (28b) 

(29b) 

(30b) 

w * 
3c^ 

4 W-L 

-ns 2m 
a = 0 

mr _ 2n 
a - 0 

I 



and Eq. (31a) becomes 

17. 

a2  = £ (31b) rs 

where r and s are the same quantities as previously defined. 

Equation (28b) indicates that ^-., the average amplitude or the 

average height of the envelope of the solution, is identical with 4, 

the value of the upper stable solution discussed in the introduction 

and given by Eq. (7). Since n and m must carry the same algebraic 

sign to cause the regions of high amplitude to correspond to the regions 

of high frequency in the waveform of the solution, it can be seen from 

Eq. (33) with y = 0 that either n and m must be zero or cos 4< 

must be zero. Since it is known that in general n and m are not 

zero, it is concluded that <\>  = 90°. By substitution of -/  = 0, <!» = 90 

and (^ = <j      in Eq. (32), 

d    = d    (1 + m) (32a) o   s 

and thus the relative amplitude modulation is determined entirely by 

the magnitude of the pulse inserted in the system so long as m is 

not allowed to become so large as to make the assumptions used in the 

derivation invalid. The phase modulation of the solution may be com- 

puted by combining Fqs. (29b), (30b) and (31b) to achieve 

r n - m fs (34) 

Experience has shown that the value for a is often less than 

ten for many physical systems so the neglect of the second-derivative 

terms introduces appreciable error. If these terms are retained but 

2      2 the terms in n  and m  are still neglected, the resulting expressions 

are 
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4   = 4    (1 + m) (32a) 
OS 

2 - (r f ft * 4) "*• Hr + s + 4) - 4 rs 

and 

2 rs (31a) 

11 = f (r - •35) (34a) 

Here the relative amplitude modulation is still determined by the 

magnitude of the pulse, but a is related to r and s, and n is 

related to m, by more complicated expressions. From these equations 

the waveform of the complete solution consistent with the assumptions 

involved n?a,,r be computed- For computational ^ur^oses it. is convenient 

to normalize the curves of Fig,, 2 to include all possible values of the 

parameters. For this purpose the 4     in Eq, (7) is related to a 

parameter x by 

P„ = (T)  x . 
Then 

2/3 
^ . b • | . (I)-" J - -Jpy- (7b) 

(-) y. 

By dividing through by b and rearranging terms 

2      - 1/3 p2/3 p  p2/3 1/3 
Kb       X)      4   b   x bx Uc; 

CV3 F2/3 
or upon dividing through by  r and letting 

y • (4- - i) 

it is determined that 

b  "'  f2/3 0V3 

y-|x2-i (7d) 

where y is the normalized excitation frequency and x is the nor- 

malized stable response amplitude. Equation (7d) is plotted as the 
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s^lid curve in Fig,. 3. Once the circuit constants and the drive or 

excitation constants have been selected for a particular system the 

position along the abscissa is established. This allows the direct 

reading of the normalized response magnitude, and this can be converted 

to actual response since the normalizing factors along the ordinate 

are now known* Lines of constant a and lines of constant m 

according to Eq,, (31a) and (32a) respectively are shown in Fig, 3. 

Numerical values for the contours of constant a on this chart depend 

upon the circuit constants in a complicated manner and thus are not 

universal. However by substitution of the definitions of x and y 

into the definitions of r and s, and elimination of y by the 

use of Eq, (7d), it can be shown that 

2 

h73~273)r - I *2 + x • c r 

and 2 

(-^7T^73)s = x (36) 

These relations are plotted in Fig, 4 so the actual r and s may be 

obtained quickly once the circuit and excitation constants are known.. 

After r and s have been determined, the numerical value of a is 

established through the application of Eq. (31a), This relation is 

plotted in Fig, 5 with a as a parameter. 

3. Case of introducing the triggering pulse of flux at the 

2      2 
correct time and including n  and m  terms. 

The equations pertaining to this situation are those derived in 

Section II, 1, with y = 0 and <\>  = 90 degrees. However it can be 
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seen from Eq, (28)  that the average value of the envelope of the 

solution 0, is no longer equal to the stable solution 4     as in the 
X s 

simple case considered in Section II. 2. This is a consequence of the 

constant terms introduced alor%  with the second-harmonic terms in the 

analysis of Section II. 1, 

To use these complete equations one must resort to reasonably 

involved numerical calculations. The results of such a calculation 

are shown in Fig. 6 for b = .05, c = .005 and F = 1.0. The general 

method of calculation is to let 4->  - &4     and then assign the parameter 
X     s 

o various values. This allows the calculation of r and s and thus 

the determination of a, By combining Eqs. (28), (29a) and (30a) it 

is seen that 

2 
m 

This equation is used to calculate the value of m. Since y = 0 and 

<\> =  90 degrees, Eq, (32) may be written as 

4o  « ^ (1 + m) - Vs (1 + m) (32b) 

and this equation is then used to calculate the value of 4     required 

to produce the assumed condition of modulation. By selecting a suf- 

ficient number of values for 5 the contours of constant a as shown 

in Fig. 6 may be established. These contours have not been extended 

below the steady-state response curve but this may easily be done since 

m appears as a squared term in Eq, (35) and only positive values 

have been considered in the plotting of the constant a contours in 

Fi£. 6. Use of the negative values of m in Eq, (32b) lsa'is to the 
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contours of constant a    in Fig, 6 passing through the steady-state 

response curve and proceeding downward and to the left, 

Ey comparison of Fig, 6 with Fig, 3, the effect of the inclusion 

op 
cf the n  and m  terras may be seen. The contours of constant 6, 

which correspond qualitatively to contours of constant error in the 

2      2 
solution given in Section II, 2, where n  and m  terms have been 

neglected, lie more nearly parallel to the stable solution curve than 

do the contours of constant m of Fig, 3. The contour for o = 0,95 

is labelled in Fig, 6 and the left-hand branch of the steady-state 

response curve is the contour for S = 1»0» Also as 4     is increased 

in magnitude from that which would lead to a transient-free solution, 

the value of a actually increases somewhat. These equations and 

Fig. 6 indicate that a goes to infinity but due to the assumptions 

made in the analysis, the equations are not valid in this region, 

since m is no longer small as compared to unity. Values of m at 

several points along the a = co contour are shown in Fig, 6, T~> 

achieve a closer approximation more of the higher-power terms would have 

to be included in the analysis. This leads to extremely unwieldly 

expressions. 

The contour for c. = a>, shown as a dotted line in Fig, 6, con- 

sistent with the present assumptions can readily be calculated. For a 

to approach infinity, r or s must approach zero and thus Eq, (31a) 

reduces to 

^•JLSJll^I-Lik (31c) 
rs     rs 

since the terra of   4rs    is no longer important.    Comparison of the 

definitions of    r    and    s    indicate that    3    becomes zero befor3    r 
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o 
does as 5 ia decreased from unity. Substituting the value of a s 

calculated from the above equation into Eq. (35) with s = 0 and 

a = oo yields 

2 m 
r9C&2^ _ r(r *  4)" 

„  2     16 
8 a), 

x 
S«fu>,2 

(35a) 

By replacing j!>, by or/, ,    the definition of s may be rewritten as 
X 5 

h  3c52^2 

, . b ,  s s = —1 + '  + ———— 
2       2 u)..    4 w. 

Since s is now zero, the value of 5 may be calculated from this 

equation once the circuit and excitation constants are chosen. This 

value of 6 is then substituted in Eq. (35a) to allow the calculation 

of m and thus 4     by the use of Eq, (32b). This establishes the 

a = m contour shown in Fig. 6. As already mentioned this value of a 

does not actually exist but insteadf  as experiment has shown, a has 

increased only moderately from its value for m <^C1»0, and m is 

close to unity at this boundary. 

The calculations of this section have indicated the effect of 

2      2 including the n  and m  terms in the analysis. It should be noted 

that the calculations were based on a particular circuit and thus the 

numbers appearing are not universal. However the trends indicated in 

Fig. 6 may be generally useful. This section also indicates that the 

difficulty of calculation increases rapidly as the next higher-order 

terms are included in the analysis. 
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/(., Operation with large values of /, 

Experiments using an analog computer hav« indicated that the 

solution i3 controlled almost entirely by a nigh-frequency transient 

for values of </  larger than that given by the a = oo contour in 

Fig. 6, In this case it is assumed that the solution has the form 

rf  = ?C COS CJ-t + p.    cos w, t (36) 
<, It      t 

where /„ is the amplitude of the component at the frequency of the 

excitation to,, and p1,     is the amplitude of the transient component 

at the frequency w.. By successive differentiation, cubing, neglect 

of third-harmonic terms, substitution into Eq, (5a), and collection 

of terras, it is found that 

-I2 + b • I o ^ • § c </fc
2 - ^ - 0 (37) 

and 

"'V + b + 2 ° *2   + f C  V = ° °aj 

To satisfy the boundary'' conditions at t = 0 

40 - ^ ~ rft (39) 

Eliminating *<  from Eq. (37) by the use of Eq. (39), the following 

equation is gained: 

-"i2 + b + I c (*o ~ *t>2 + I c 4* " 7^X = °    (40) 
o   t 

Knowing the circuit and drive constants, the value of / may be 

calculated consistent with various values of the initial condition p1 

This allows the calculation of <t0    by means of Eq. (39) and thus the 

calculation of w^ using Eq, (38). 
is 

If the componont /n is allowed arbitrarily to be 2%  and thus 

p1.     to be 98$ of j» . a boundary may be established above which the 
w O 
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solution is controlled almost entirely by the transient. Such a 

boundary is shown as the upper dashed curve in Fig, 6 for the con- 

stants b = .05, c = ,005 and F = 1.0. Below this boundary, but 

above the contour labelled a = oo, the approximate waveform of the 

K  " 02 
solution may be found by calculation of the ratio —>—- j     to 

establish the peak-to-peak variation in the solution. The approximate 

time interval between t.hese peaks may be computed by the comparison 

of a),  and w,. 

5. Case of ^ = i     and y f  0. 
o   s 

This is the situation existing when the triggering pulse of flux 

in a ferroresonant trigger circuit is of the correct amplitude, that 

is the amplitude consistent with the upper stable-state response, but 

where it is introduced in the system other than at the time of the 

positive peak of the excitation vol+-age. 

For simplicity the calculations here are carried out with the 

neglect of the n  and m  terms. The equations (28b), (29a) and 

(30a) are then valid and the average value of the envelope of the 

solution is again equal to ^ . If the argument of the tangent func- 

tion in Eq. (33) is assumed to be small and m and n are still 

restricted to be reasonably small as compared to unity, the angle 

(y -  n cos <\>)    in Eq, (33) is approximately equal to — cos <\>, 

Substitution of this approximate equality into Eq. (32) with 

4   «* 4y " d3    leads to the requirement that ^ = 0 if m is not 

restricted to zero for this condition of operation. Thus Eq. (32) 

reduces to 

i   - <j   cos (y - n) (32b) 
s   s 
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2       2 
This indicates that n = y. In the case where the n  and m*" terms 

are retained, p.    is not quite equal to 4     and correspondingly n 

is not quite equal to y. However if y is not allowed to become 

large, the present equations represent a good approximation. Contours 

of constant m and constant a are shown in Fig. 7 for the constants 

b - .05, c = .005 and F = 1,0. The abscissa is the normalized 

frequency and the ordinate is the angle y in radians,    The value of 

a was calculated using Eq. (31a) and the value of m calculated by 

using Eq. (30a). 

6. Case of 4   £ 4     and y ^ 0. 
O     3 

Previous sections have shown that the undamped solution in the 

neighborhood of the upper stable region is in the form of a sinusoid 

modulated both in amplitude and phase. If y = 0 but 4   / 4 >    the 

modulation depends to a first approximation on the ratio 4j'4  * If 

4=4     but y / 0, the modulation depends to a first approximation 

on y. However in the general case, 4   / 4     and y / 0. In other 
O     3 

words, the triggering pulse of flux is of the wrong amplitude and is 

introduced at the wrong time in the excitation cycle. As indicated 

ir the previous sections both of there inequalities lead to modulation 

in amplitude and phase, 

2      2 
In the treatment of this general case, the n" and m  terms 

iral-iH M       =    rl or,A        f> <!   ft.  ^    QC\° 

are neglected so Eqs, (28b), (29a), (30a), (31a), (32) and (33) are 

valid, 0, = 4     and 0 < <\> <  90°. Thus Eq. (32) and Eq. (33) do not 

reduce to any simple form and calculations aro more laborious than in 

the other cases. To indicate graphically the nature of the above 



30. 

equations a sample calculation was made for b =• ,05; c = .005,, 

F = 1.0 and a), = 0.6, These quantities determine r and s and 

thus a may be calculated by the use of Eq, (31a). The m = 0.1 

contour as shown in Fig. 8 was calculated by solving for n using 

Eq. (30a) and putting this value for n and the assumed value of 

m = 0.1 into Eq. (33) which is then a transcendental equation in y 

and <\>.    By a trial-and-error process, values of ^ were determined 

for various assumed values of y. These values were then inserted in 

Eq. (32) to obtain the allowable value of 6J4     which is then used 

as the abscissa in Fig. 8. This figure indicates the combinations 

of y and 4J 4     that- will lead to an amplitude—modulati on i nriex of 

0.1 for the particular circuit and drive constants given above. 

J.XJ-.  iranaient benavior in tne negion oi Lne Lower oracie joai.e. 

In the undamped case the operation is determined by the equation 

^2+ \+ -h ^ = ~h cos e (5b) 
d9   u>,   0),      w. 

It can be seen by a comparison of the two curves of Fig, 2 that the 

nonlinearity is generally not so important in the region of the lower 

stable state as it is in the region of the upper stable ctate. Analog 

computer plots as shown in Section V, Fig. 14 confirm this statement. 

Therefore it is assumed that the solution is of the form 

9\ 4 = 4o  (cos 6 T g cos r) (41) 
v n 

This is the sum of two cosinusoidal components of amplitude 4'.  and 

g4* , respectively, and represents the exact form applicable to the 

corresponding linear circuits The term in © represents the 
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steady-state part of the solution at the frequency of the excitation 

and the term in 7- represents the transient part of the solution at 

a frequency related to the excitation frequency by the factor h. 

The development here is for the case of introducing the triggering 

pulse of flux at the correct time in the excitation cycle but with an 

amplitude slightly different from that which would lead to a transient- 

free solution. 

By successive differentiation of Eq. (hi),  cubing, and substitu- 

tion into Eq. (5b) viith the neglect of second and third harmonic 

termst  it is determined that 

3 „   bfrf,  3c^-'  3c^/g 
pt 2 ? 

4 w. 2 to. 

3„2-| 

2 cos 9 

&to      bgjz^  3cgy  3cgV;- 

L h' to. 2 w. 

3v3l 

w. 
cos r =» 0 

it 
(42) 

"1    - wl    - -1 -» 

By requiring that g<^<1.0, it is seen that the term in Eq. (42) 

involving cos %    requires that 4t Z& 4 f    where 4     is the value for 
\, s s 

the stable solution on the right-hand branch of the curve in Fig. 3. 

From the term in Eq. (42) involving cos T-> the following relation is 

established. 

1 . b 3c*s
2  3cg2^2 

2+—V 2" = 0 to,   2 to,    4 w-i 

If g«l«0 this equation reduces to 

h2 = 
2 to, 

2b + 3c(^ 

(43) 

(43a) 
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and thus the frequency of the transient part of the solution is 

independent of g, the factor that expresses the. difference in 

actual pulse magnitude from the magnitude needed for a transient- 

, o 
free solution. It may be noted that a larger value for the cp 

product leads to a smaller value of h and thus to a higher value 

for the frequency of the transient component of the solution. 

IV. Operation with Damping 

1. Neighborhood of upper stable state. 

The differential relation applicable is that of Eq. (5b) with 

the addition of the term tS to the left-hand side of the equa- 
te u9 ^ 

JL 
tion. By the assumption of the same general form of solution as in 

Section II. 1», Eq. (7i2) is thus modified by the addition of the term 

rf (-A sin p & *  cos 0 &) (44) 

to the left-hand side* The magnitude function A and the phase func- 

tion p are assumed to have the same form as in Eqs. (13) and (14) 

respectively, but now n and m are allowed to be functions of 9. 

The development here is for the case of 4   /* 4     and y = 0. Thus 
O     G 

<4» = 90 degrees and the following relations are valid. 

A - rf[l + m cos |] (13a) 

P « 6 + n sin - (14a) 
i 
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S^m 
dA    1  .  9 . / dm    9 ,. -v 
d9 = ~ ~•' sin a * *L d9 cos a (45) 

d^A _ ^  e ^dms.ne 

de2 "  a2 C°S a  a de Sin a 
(46) 

dS  . . n   9 . dn . 8 (in\ _E = x + _ cos - + _ sin _ (47) 

d2B    n  . 6  1 dn   9 ... dn   9        ,ls}s —* = 5 sin - + - -ss cos - + -js cos -        (48; ,_2     2    a  a aB a do    a 
d9    a 

(•^2   i j. 2n    9 . 2dn .9 ,,Q\ (dl)  " X + -  -os a + W sin a v49) 

The damping has been assumed to bo small in the development of these 

relations. This assumption allows the steady-state portion of the 

solution to be approximately in phase with the excitation as has been 

assumed and allows the neglect of the terms in —-, —•x,    and (-rr) 
d6~  d9ki       aw 

which would otherwise appear in the above relations. Also it has been 

assumed that n is small as compared to unity so terms in n^ have 

been neglected; These relations are substituted into the modified 

form of Eq, (12) and the resulting expression expanded by simple 

multiplication. In this expansion,Eqs. (21) through (26) have been 

used and all t^ms in n , m , ma, n-75 and m-j~ have been neglected. 

9 9 The coefficients of the cos 9 sin — and the cos — sin 9 terms in 
a a 

this expansion must be separately equal to zero. This results in 

ldndn2dm+ML + am = 0 (5Q) 
a d9      d9      d9       oo^     w, ^ } 

and 

2 dm , 2dn , an . am  ,- / r-i \ 
ad9 + "d9" + ^  a7^-° (51) 

By differentiation of Eq, (34a) with respect to 9 it is found that 

to _ a- /„ _ _1_\ <]£ (c0\ 



35. 

If Eqs. (34s.) and (52) are substituted into Eq. (51) to eliminate n 

and its derivative and the terms rearranged, it is seen that 

<-       a -•    1*-        a —I 

or by simplification 

m    <m>. 

By integration of both sides of Eq. (54) and letting m = m  at 9=0 

^e m   2u " ^55J 
o    1 

or 
a 

•2- = e ^1 (56) 
m ' 

Thus it is established that the damping is identical with that of the 

13 
corresponding linear circuit  so long as the various assumptions 

that have been made in the derivation are valid* 

2.  Neighborhood of lower stable state. 

As in the region of the upper stable state the term — -rg 

must be added to the left-hand side of Eq. (5b). The solution is 

assumed to be the same as in Section III, Eq, (41) except that g is 

now allowed to be a function of ©, The factor h WAG shown to be 

independent of g in Eq. (43a) and thus in this case independent of 6. 
,2 

After successive differentiation and neglect of the term in —§, the 
d9^ 

assumed solution is substituted in Eq. (5b). This involves the 

cubing ox the assumed solution during which the term in g     and the 

Q 
terms involving the second harmonic of 6 and r were neglected. 

A 
After collecting terms and equating the coefficients of the sin 7- 
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term to zero, it is seen that 

H - - o2- g (54a) de    2u>, s 

Thus as a first approximation the damping is identical with that in 

the region of the upper stable state and with that of the linear 

system. 

V. Solution by Analog Computer 

To check the validity of the derivations in the preceding sections 

and to present solutions In the form of actual complete time functions, 

Eq, (5) was programmed on a Reeves Electronic Analog Computer as shown 

in block diagram form in Fig, 9. The circuit and excitation constants 

used in obtaining the plots to be presented are b = .05, c = .005, 

F = 1,0 and u, = 0.65. 
X 

Figure 10 illustrates the undamped solution with y = 0 for 

various values of -7- smaller than unity. The angle y    is set equal 

to zero in the computer setup by letting the initial condition on 

integrator No, 1 in Fig, 9 be zero and placing the desired value of 40 

as the initial condition on integrator No* 4 with zero initial con- 

dition on integrator No, 3. The initial condition on integrator h->.  2 

starts the excitation at its maximum instantaneous value at t = 0, 

It can be seen from the plots in Fig. 10 that m and n vary in the 

expected fashion and that a    is essentially independent of m in 

this region. As calculated by Eq. (31a), a » 3.75 which checks the 

computer solution fairly accurately as is obvious by comparison of 
• 1' 

I the plots of 4   with the plot of the excitation on the same time 

i scale. It is apparent in Fig, 10 that angle <\>   is 90 degrees. 
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Captions for Fi.^s, 10-15 

These figures are all solutions for Eq. (5) obtained with 

the analog computer setup of Fig, 9 under the following 

conditions. 

Fig. 10. 4J4  <C 1,0, y = 0, upper stable state. 

Fig. 11, 4J4   > 1.0, 7 - 0, upper stable state. 

Fig. 12. 4J4   > 1.0,  a / 0, upper stable state. 

Fig. 13. 4 (4    = 1,0, y ^ 0,  upper 3table state. 

Fig. 14. g ^  0, y = 0,  lower stable state. 

Fig. 15. 4J4   ^1-0,  y=0, a/0, upper stable state. 
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Figure 11 shows the nature of the solution for the same situation 

as above except for values of -j-    greater than unity. Here the 

transfer to the region where the solution is determined almost entirely 

by the high-frequency transient is clearly demonstrated. It is also 

apparent that a increases somewhat from its value in Fig. 10 as 4 

is increased as predicted in Section II, 3. 

To illustrate the nature of the solution in an actual physical 

system where damping is inherently present, the above constants were 

used with the addition of a «• .05. The resulting plot is shown in 

Fig. 12. The initial condition 4     was chosen large so the solution 

starts off essentially as a high-frequency transient with an exponential 

decay. As soon as the amplitude decays somewhat, the modulation of 

amplitude and phase appears, and subsequently the transient portion 

of this is damped out leaving what is essentially a sinusoid repre- 

senting the upper ateady-otats solution. This is the general behavior 

that is predicted qualitatively by an inspection of the various regions 

• 

i 

and curves in Fig. 6. There is no assurance that the upper stable 

state will be reached in the above procedure. Slightly different 

methods of obtaining a plot of the form of Fig. 12 have led to the 

final operation being at the lower stable state. This possib:lity is 

^.._._-._, u__ „„__w,10 , illustrate i by Hayashi in a curve, for a particular sot of circuit 

and drive constants, indicating that certain values of 4 may lead 

eventually to operation at either of the two stable states depending 

on the value of the angle y. 
4Q 

The operation with -r • 1.0 and y f  0 is shown in Fig. 13, 

Ths desired value for y is placed into the computer setup by adjusting 

the initial condition on integrator No. 2 to the instantaneous value 
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of the excitation consistent with the desired value of y i.nd placing 

an initial condition on integrator No. 1 of sufficient magnitude to 

insure that F has the desired value, F • 1.0. The theory developed 

in Section II. 5. is not valid for values of y as large as shown in 

some of the plots in Fig. 13 but, for example, the value of a as 

calculated fro/n Eq. (31a) is approximately correct so long as y is 

small, and the plots show that a increases slightly as y is in- 

2      2 
creased. This would be predicted by including the n  and «a  terms 

in the analysis of Section II. 5. It may be ouserved that 4" = 0 in 

these plots. 

The undampr' solution in the neighborhood c>f the lower stable 

state is shown in Fig, 14. Here the modulation of amplitude and phase 

does not occur in the same manner as in the neighborhood of the upper 

stable state but, as developed in Section III, the solution is in the 

form of the sum of two sinusoidal components. The plots of Fig. 14 

indicate that the frequencies of the two components ha.\a  a ratio of 

almost two to one. Calculations using Eq, (43a) give h = 1.9, 

Figure 15 illustrates the effect of clamping on the solution for 

-r-  =0.8 and y = 0, Here a = ,01, a = .05 and a = Oil respectively 

for the three curves shown. Calculations of the expected behavior for 

a = ,05 using Eq, (56) indicate that the amplitude modulation should 

decrease tc about one-third after about five cycles of the excitation, 

Tta i gc-eral behavior can be seen in the curve for a = ,05 in 

Fig* 15. 
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VI, Experiment with Actual Inductor 

The circuit of Fig. 1 was established using the 115-volt winding 

of a Western Electric transformer No. D163413 as the iron-cored in- 

ductor The core of this unit is designed to operate at 400 cps. li 

has a relatively small cross-section and is easily saturated. The 

capacitance used was C = 1.0 [if    and the resistance of about 500 ohms 

ic that due to the winding resistance and core loss of the inductor. 

The constants describing the inductor were evaluated previously 

by means of a method presented in the literature.   Briefly the 

method used was to present a hysteresis loop of controllable size on 

the screen of a calibrated oscilloscope. The magnetization curve is 

then determined by connecting the tips of the various hysteresis 

loops and the desired constants of Eq, (l) were determined by a curve- 

fitting procedure. For the present inductor, 

b = ~ - ~- - 1.39 x 105 sec"2 
'-•  7•<• 

and 

c = -ir -  1#« x 10 weber-tums  sec 

where a, is the reciprocal of the self-inductance of the corresponding 

linear inductor and a~ is the nonlinearity parameter of Eq. (l). 

If the circuit is supplied with 15 volts rms at 200 cps, 

F = w-E - 2,66 x 10  and the value of y is 

2 

y „ (-g_ - 1) ^3^3 - 3.25 

From Fig. 3„    x • 2,3 for the upper stable state. From Fig, 4, 

2 

(2/31 v?)r = 8   or  r = 2-3 
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and 0 

(
F2/3 cl/3

)s = *U  °r"  S = -125 

Then from Fig. 5 or Eq„ (31a), a - 4.7. 

If the triggering pulse of flux in this circuit is adjusted so 
4 
-T-  • 1,1 and y « 0, it is seen that m = 0.1 from Eq, (32a), and 
s 

from Eq. (34a) that 

n - » (P - i) - ^2Ljp*I (2.3 - i) - 0.53 radians, 
a 

The maximum instantaneous frequency in the waveform of the solution 

is gained by the differentiation of Eq. (14) with respect to time and 

is oo (1 + -), Substitution of the above values in this expression 

indicates that the maximum instantaneous frequency for the above 

condition of operation is about 11-percent higher than the excitation 

frequency. 

If now the pulsing conditions are altered to allow -r- = 1.0 and 

y = 0.2, it is seen that n = 0,2 from Eq. (32b) and from Eq. (34a), 

m = .038. Thus the introduction of a triggering pulse of amplitude 

equal to 4     at a time corresponding to 11.5 degrees from the time s 

of the peak of the excitation leads to an amplitude at the peak of 

the modulation about 4-percent greater than the amplitude of the 

steady-state solution alone, 
9 o / If the pulsing condition is further altered to allow -r- f 1.0 

and y £  0, Eqs. (32) and (33) must be used. It is assumed for the 

sake of illustration that the amplitude-modulation index is desired to 

be m = 0.1 for y - 0,2. Substitution of known values in Eq. (33) 

gives 

tan (0.2 - 0.53 cos «,) - (l + a ^)^.U sto ») 



i 

I 

• 

•• i 

! 

49. 

By a trial-and-error procedure <\>    is found to be approximately 

69 degrees. Substitution of this value, along with the other lenown 

values, into Eq, (32) shows that 

4. 
- (1 • 0,1 sin 69°) cos (0.2 - 0.53 cos 69 ) - 1.09 

s 

In other words if a pulse magnitude 9"percent greater than 4     is 

inserted in the system at such a time that y = 0,2, an amplitude 

modulation corresponding to the assumed m = 0,1 will occur# This 

does not does not represent a large difference from the calculation 

above for y = 0 but the difference increases rapidly as y is made 

larger, as can be seen from an inspection of Fig. 8. 

According to the development in Section III, the frequency of 

the transient component generated in the above circuit in the neigh- 

borhood of the lower stable state is expressed by Eq. (43a)a    At the 

I lower stable state for y = 3«25> the value of x from Fig. 3 is 

x = 0.32 and since 4   -  (—)VJx = 1.9x10**, it is seen that s   c 

2 
h2 = —1  .  2(2n ; 200)2 „  fl 

2b + 3c4 2      2  1.39 x 165 + 3 • 1.25 x 108 (ls9 x lO
-2)2 s 

Thus h <- 3.11 so approximately 3 cycles of the excitation occur 

during one cycle of the low-frequency transient. 

The laboratory setup used in testing the actual circuit is shown 

in Fig, 16. The triggering pulse is introduced in the two low- 

voltage windings of the transformer connected in series. The inductor 

voltage is integrated by means of R, and C. so the voltage across 

. C, ha3 approximately the form of the flux wave in the core. A delayed 

trigger from the oscilloscope is ueed to actuate a relay which in turn 
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in Figs. 17 and 18 because the inductor voltage is the derivative of 

the flux and thus harmonics are accentuated in the wavefonr. of voltage. 

Alternatively, harmonics are suppressed by the integrator circuit of 

R, and C, acting as a low-pass filter. As stated previously, the 

nonlinearity is not so important in the region of the lower stable 

state so the inductor voltage in Fig. 38(f) appears much more sinusoidal 

in this region. 

While it is difficult to obtain quantitative data from these 

oscilloscope traces, it is felt that they indicate qualitatively the 

nature of the solution predicted in the foregoing analysis, 

VII. General Comments 

The transfer from the upper to the lower stable state in a 

circuit as shown in Fig. 1 is somewhat different from the transfer 

in the opposite direction. If the triggering pulse of flux releases 

the system in the region of the lower stable state, g<T<C.1.0, and the 

operation is characterized by a solution in the form of the sum of 

two sinusoidal waves of different amplitude and frequency. If the 

triggering pulse releases the system in the region of the upper stable 

state, m<<C1.0, and operation is characterized by a solution in the 

form of a combined amplitude and phase"modulated wave, so long as the 

approximations involved in the analysis are valid. These approxima- 

tions require that -r* be close to unity and that y be close to zero. 

The discussion to this point has been directed largely toward the 

simple circuit of Fig, 1. In a complete ferroresonant trigger circuit 

involving two circuits of the form shown in Fig. 1 the operation is 
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somewhat more complicated since transfers in both directions take 

place during the same time interval and the behavior of one half of 

the circuit affects the other because of the common impedance* How- 

ever it seems reasonable to assume that as a first approximation the 

transiant which independently is of the longer duration will determine 

the time of the over-ail transfer. The ideal condition of operation 

woulc- require using a pulsing system that would establish exactly the 

correct condition of flux in both cores at exactly the correct time in 

the excitation cycle. Then -y  " 1.0 and y • 0 in one core and 

g = 0 in the other and there would be no transient generated. The 

transition time would then be that of the length of the pulse itself. 

This condition is undoubtedly very difficult to achieve in a practical 

circuit. However if an appreciable transient generated as a result 

of an incorrect pulsing condition is still present after four or 

five cycles of the excitation it would appear advantageous to delay 

the time position of the triggering pulse enough to allow a smaller- 

magnitude transient to be generated. It should be noted tnat this 

procedure would ixicrease the complexity of the pulsing circuit to a 

considerable degree. 

An alternate pulsing system of even more complex nature is that 

which introduces the pulse of flux at the wrong time in the excitation 

cycle, y f- 0,    but which has a magnitude equal to the instantaneous 

magnitude of the steady-state value of flux. Here the pulsing circuit 

daf 
must adjust the rate of change of flux TQ at the time of the release 

d^ 
of the system by the pulse to that consistent with the -rr of the 

steady-state solution at that instant. This leads to a transient-free 
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operation in the same fashion as in the case of -r- =•• 1.0 and y = 0 

and allows the triggering pulse to occur at any time in the excitation 

cycle at the expense of an extremely complex pulsing circuit* 

With a pulsing condition different from the iceal conditions 

outlined above and thus leading to a certain magnitude of transient, 

the damping may be adjusted to cause the transient component to 

disappear as quickly as possible. Seme general conclusions may be 

drawn regarding the best point of operation along the curve of Fig. 3 

if the damping is to be adjusted to decrease the transition time. 

If the inductor has been chosen^ b and c are fixed but operation 

may be shifted along the normali zed-frequency axis of Fig. 3 by 

changing the excitation frequency, GJ, . The effect of damping puts 

an upper limit on the value of excitation frequency that will lead to 

the existence of two 3table states. It may be shown that Eq. (7) 

may be rewritten as 

(VB<b - «*) * I o^f  • &\\
2  - F2     .  (57) 

to include the effects of damping. By differentiation with respect to 
da)., 

/ and setting -rjr equal to zero, 

((b - t^2) • | cgCs
2][(b - W-L2) * | c^2] + a\2 - 0    (53) 

This equation established the locus of the vertical tangents to the 

response curves of the form of Fig, 2 but which include the effect 

of damping. If this equation of the locus of vertical tangents is 
dw, 

differentiated with respect to 4     and again -r-r- set equal to zero, 
s 

the condition of operation where only one point of vertical tangency, 

and thus one stable state, exists should bs established. The result 
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of this operation in terms of the normalized quantities x and y is 

y = | x2 (59) 

By substituting this relation into the normalized form of Eq, (57) the 

following relation is gained. 

I +  .W U*m± (60) 
9    o2/3FV3      8y 

K    ' 

This equation establishes the relation between the normalized excita- 

tion frequency y and the damping a to cause the two stable states 

to merge. It is evident from inspection of Fig. 3 that the minimum 

value of y in Eq, (60) must be approximately y = ?L.7. Experiment 

with the actual inductor mentioned in Section VI gave a value of about 

y = 1.8. Here external series resistance was added until tho two 

stable states merged at a drive frequency of about 140 cps as the 

drive voltage was kept at 15 volts rms. Substitution of the value 

y = 1.7 into Eq, (60) allows the calculation of J • approximate 

magnitude of the maximum permissible value for the damping constant 

once the excitation constants and the circuit constants are fixed. 

This amount of damping coupled with the appropriate drive frequency 

leads to the most rapid attenuation of the transient osrillations and 

thus qualitatively to the most rapid transition from one stable state 

to the or,her for a given condition of triggering. It should be noted 

that the above paragraphs do not cake into consideration the difference 

in levels between the two stable states. In the limiting case dis- 

cussed, the two levels are of the 3ame amplitude. 

It may be seen by inspection of Fig. 3 that higher values cf u-, 

will lead to a greater difference in the amplitude of flux at the two 
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•' 

stable states. This niay be a factor in many designs and in general 

it is probable that some compromise must be made between short 

transition time and difference in level between the two stable states. 

The determination of the required circuit and excitation constants to 

satisfy a gmen  set of conditions is illustrated in the following 

paragraphs. 

If the frequency of the excitation co, , the actual response at 

one of the two stable states, and the ratio of the response at the 

two stable states are specified, the remaining circuit constants may 

be computed. As an example CJ,  is chosen to be 6.23 x 10 radians/sec. 

The ratio of the steady-state response at the two stable states is chosen 

to be equal to ten. The actual voltage across the inductor is desirer. 

to be 2C volts mis when operation is at the lower stable state. For 

values of the abovo-mentioned ratio as high as ten, the inductor voltage 

at the lower stable state is approximately equal to the supply voltage, 

xhus in this example E = 20/2 volts and F = CD^ E a 1.78 x 10" weber- 

turns/sec . The inductor voltage at the upper stable state is 10E or 

200\fz    volts. Inspection of Fig. .3 indicates that for a ratio of 

the response at the two stable states equal to ten, y is about 4.0 

and the two values of x are about 2.*j and 0,25 for the upper and 

lower state respective . The inductor voltage Er  is related to the 

flux^linkage 4     by EL = o>, d *    so 4     a^ the upper stable state is 
S Ju     X S S 

200 y/2 rc,V3 T  = 4.5 x \0  weber-turns. Since x « (is)   4  i the 
6.28 x 104 F     S 

required value for c may be computed by substitution of the known 

constants into this equation. In this example 

.6, 
c . F -4 - 1-78 x 106(2 5)3 . 3ml x 1014 

4? (4.5 x 10*"3)3 
—2        "2 weber-turot; ** sec 
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Wl     b 
Since y = (-^-l) O;o j/a 

= 4-.0, the required value for b may be 
F  C ' 7   -2 

computed as b = 1.1 x 10 r»ec  . This completes the evaluation of 

all the circuit and excitation constants for the case of zero damping. 

The damping constant a should now be adjusted to be of suf- 

ficient magnitude .just to allow the exibtence of two stable states at 

the chosen frequency of excitation. This adjustment will cause the 

most rapid decay of any transient oscillation. Introduction of the 

damping will decrease slightly the ratio of ejnplitude at the two stable 

states. Therefore in this example the ratio will be slightly less 

than ten after the addition of damping. The procedure used to determine 

the value of the damping constant a is to solve Eqs, (57) and (58) 

simultaneously. Equation (57) is the equation for the steady-state 

response including the effect of damping. Equation (58) is the equa- 

tion for the locus of the vertical tangents to the response curves. 

After substitution of the constants already determined for the undamped 

case, Eqs. (57) and (58) are equations in the two variables, the 

damping constant a and the steady-state response 4 . The numerical 

calculation required to eliminate 4     and solve for the damping 

constant a is lengthy and is not included hers. However the result 

of srch a calculation indicates that the approximate value needed to 

satisfy the stated requirements for the damping in this particular 

circuit is a 

The calculations above have indicated a design procedure starting 

with a particular set of requirements. If a large ratio between the 

two stable states and large damping are both desired results, it is 

possible that the design procedure snould be based on a figure of <• irit 

defined as the product of these two quantities. In particular, the 

= 6.9 x lCr sec = 
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'. excitation frequency should b? chc3en to allow this product to be as 

large as possible. As stated previously, Fq: (58) is the equation for 

the locuf? of the vertical tangents to + he response curves which include 

7 
the effect, of damping. It has been shown that if the factor 

l(b - u), ) +4 c^.   of Eq, (58) is set equal to zero, the resulting 

equation determines, approrJmately, the locus of the vertical tangents 

which occur at the high-amplitude stable state. This is the stable 

state of interest when the damping is to be increased until any further 

increase would result in the existence of only one stable state at a 

particular excitation frequency. Substitution of the above relation 

into Eq, (57)> the equation for the steady-state response including the 

effect of damping, results in the relation &4 <*>-> = F. Since F - w,E, 

E 
it is seen that ^  at the upper stable state is given by —, Here E 

s a 

is the amplitude of the supply voltage and a is the maximum allowable 

damping constant. It has been stated previously that the 4   at v-he 

E 
lower stable state is given by — if the ratio of the amplitude at 

the two stable states is reasonably large. This is equivalent to 

2 
having u>, "S>b. From the above relations at the two stable states, 

it is seen that the ratio of the amplitude at the upper stable state 
wl 

to the amplitude at the lower stable state is eaual to —. This ratio 
a 

! multiplied by the damping constant is equal to U),. Thus it. appears 

that a)-, should be chosen as high as possible to obtain a maximum 

value for the figure of merit defined above. Once u,  is chosen, the 

determination of the remaijiing circuit and excitation constants would 

proceed as in the previous example. 
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